ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen
نویسندگان
چکیده
UNLABELLED Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C-F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C-F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C-F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. IMPORTANCE Organofluorides are produced as pesticides, pharmaceuticals, and other chemicals and comprise approximately one quarter of all organic compounds in the pharmaceutical and agricultural sectors; they are considered a growing class of environmentally relevant persistent pollutants. Especially in the case of fluoroaromatics, biodegradation is hampered by the extreme stability of the arylic C-F bond. In aerobic microorganisms, degradation proceeds via oxygenase-dependent C-F bond cleavage reactions, whereas the enzymes involved in the degradation of fluoroaromatics at anoxic sites are unknown. Here we report a strategy for the complete biodegradation of a fluoroaromatic to CO2 and HF in a denitrifying bacterium via activation to a CoA ester, followed by oxygen-independent arylic C-F bond cleavage catalyzed by an ATP-dependent enzyme. This reaction, in conjunction with a transcriptional adaptation to fluorinated growth substrates, is essential for the anoxic biodegradation of 4-fluorobenzoate/4-F-toluene and probably other fluoroaromatics.
منابع مشابه
Promiscuous Defluorinating Enoyl-CoA Hydratases/Hydrolases Allow for Complete Anaerobic Degradation of 2-Fluorobenzoate
Biodegradation of the environmentally hazardous fluoroaromatics has mainly been associated with oxygenase-dependent defluorination reactions. Only very recently a novel mode of oxygen-independent defluorination was identified for the complete degradation of para-substituted fluoroaromatics in the denitrifying Thauera aromatica: a promiscuous class I benzoyl-coenzyme A (BzCoA) reductase (BCR) ca...
متن کاملA Facile and Environmental Friendly Method for C=N Bond Cleavage of Imines Using p-Toluenesulfonic Acid in Solid State
A simple, efficient and clean procedure has been developed for the cleavage of imines C=N bond. Deprotection of imines to their parent carbonyl and amine compounds was achieved using p-toluenesulfonic acid in the solid state condition at 25-45 ˚C. The salient features of this methodology are shorter reaction times, cheap processing, high yields of product and easy availability of the catalyst. ...
متن کاملH2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research
Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...
متن کاملThe role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from Escherichia coli.
The energy requirement for protein breakdown in Escherichia coli appears to be due to protease La, the lon gene product, which hydrolyzes proteins and ATP in a coupled process. This novel enzyme was investigated with small peptides, identified as substrates in the preceding manuscript. Although the degradation of proteins to acid-soluble material requires hydrolysis of a nucleoside triphosphate...
متن کاملMechanism for oxygen exchange in the chloroplast photophosphorylation system.
The oxygen exchange that occurs between water and the gamma-PO3 of ATP in light-activated chloroplast lamellae was found to proceed with close to full equilibration of the oxygens before ATP returned to the medium. This is in contrast to the entry of approximately one water oxygen when ATP is synthesized from ADP and P1 in the same system. In the latter case, the limitation is kinetic, however,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016